2025年度

MB 数 学

3月12日(水) 理 学 部 (数学科) 12:20~14:50 【後 期 日 程】

注 意 事 項

試験開始前

- 1 監督者の指示があるまで、問題冊子、解答用紙に手を触れてはいけません。
- 2 監督者の指示に従って、全部の解答用紙(5枚)に受験番号を記入しなさい。

試験開始後

- 3 この問題冊子は、5ページあります。はじめに、問題冊子、解答用紙を確かめ、枚数の不足や、印刷の不鮮明なもの、ページの落丁・乱丁があった場合は、手をあげて監督者に申し出なさい。
- 4 解答はすべて各間に対応した解答用紙に記入しなさい。
- 5 解答スペースが不足するときは、解答用紙の裏面も使用することが出来ます。ただし、その 場合は、表面に「裏面へつづく」と明記しなさい。
- 6 問題は、声を出して読んではいけません。
- 7 各間の配点は、比率(%)で表示してあります。

試験終了後

8 問題冊子は、必ず持ち帰りなさい。

- 1 箱の中に 1, 2, 3, 4, 5, 6 の数字が 1 つずつ書かれた 6 個の球が入っている。この箱から 3 つの球を同時に取り出し、球に書かれている数字を調べてから取り出した 3 つの球を箱に戻す。この試行を 3 回続けて行うとき、次の問いに答えよ。
 - (1) 1回目の試行で取り出される球に書かれている数字の積が3の倍数である確率を求めよ。
 - (2) 2回目までの試行で、2回続けて取り出される球が1つもない確率を求めよ。
 - (3) 2回目までの試行で2回続けて取り出された球が1つであったときに、3回続けて取り出される球が1つもない確率を求めよ。
 - (4) 3回続けて取り出される球が1つもない確率を求めよ。

(配点 20%)

- **2** \triangle ABC において,その内接円の半径を 1 とし,BC = ℓ とする。また, \triangle ABC の内心を I,内接円 と辺 BC,辺 CA との接点をそれぞれ D,E とし, \angle BID = α , \angle CIE = β とする。 \triangle ABC の面積 を S とするとき,次の問いに答えよ。
 - (1) ℓ を α , β を用いて表せ。
 - (2) $\frac{\pi}{2} < \alpha + \beta < \pi$ を示せ。
 - (3) $x = \tan \alpha$ とおくとき、 $S \in x$ 、 ℓ を用いて表せ。
 - (4) $\ell = 2(2+\sqrt{3})$ の場合に、S が最小となるときの \angle ABC の大きさを求めよ。

(配点 20 %)

- **3** 次の問いに答えよ。
 - (1) $z=\frac{1}{2}+\frac{\sqrt{3}}{2}i$ のとき, $z^5+\frac{1}{z^5}$ の値を求めよ。ただし,i は虚数単位を表す。

 - (3) θ を実数とするとき、次の 2 つの等式が成り立つことをそれぞれ示せ。

$$4\cos^3\theta = \cos 3\theta + 3\cos \theta$$
, $16\cos^5\theta = \cos 5\theta + 5\cos 3\theta + 10\cos \theta$

(4) $\cos^2\frac{\pi}{10}$ の値を求めよ。

(配点 20 %)

- **4** \triangle ABC の外心を O, 垂心を H とし, O \Rightarrow H とする。また, \triangle ABC の外接円の半径を R, 線分 OH の長さを ℓ とする。点 P が \triangle ABC の外接円上を動くとき, 次の問いに答えよ。
 - (1) $\overrightarrow{OH} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$ であることを示せ。
 - (2) s, t は定数とする。 $\overrightarrow{OQ} = s\overrightarrow{OH} + t\overrightarrow{OP}$ を満たす点 Q の軌跡について,点 P が $\triangle ABC$ の頂点にあるとき,点 Q はその頂点に向かい合う辺の中点にあるとする。このとき,s, t の値をそれぞれ求めよ。また,点 Q の軌跡を求めよ。
 - (3) ベクトル $\overrightarrow{AP} + \overrightarrow{BP} + \overrightarrow{CP}$ の大きさの最小値を R, ℓ を用いて表せ。また,最小となるときの \overrightarrow{OP} を R, ℓ , \overrightarrow{OH} を用いて表せ。

(配点 20%)

- **5** 関数 $f(t) = \int_0^t e^{-x^2} dx \ (t \ge 0)$ について、次の問いに答えよ。
 - (1) t > 0 とし、n を正の整数とする。このとき、次の不等式が成り立つことを示せ。

$$\frac{t}{n} \sum_{k=1}^{n} e^{-\left(\frac{k}{n}t\right)^2} \le f(t) \le \frac{t}{n} \sum_{k=0}^{n-1} e^{-\left(\frac{k}{n}t\right)^2}$$

(2) R > 0 とする。このとき、すべての実数 x について、次の不等式が成り立つことを示せ。

$$\frac{e^{-(1+x^2)R^2}}{1+x^2} \le e^{-R^2}$$

(3) R > 0 とし、n を正の整数とする。このとき、次の不等式が成り立つことを示せ。

$$\frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + \left(\frac{k}{n}\right)^{2}} - e^{-R^{2}} \le 2 \int_{0}^{R} f(t)f'(t) dt \le \frac{1}{n} \sum_{k=0}^{n-1} \frac{1}{1 + \left(\frac{k}{n}\right)^{2}}$$

- (4) 極限値 $\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{n}\frac{1}{1+\left(\frac{k}{n}\right)^2}$ を求めよ。
- (5) 極限値 $\lim_{R\to\infty} f(R)$ を求めよ。

(配点 20%)

正解·解答例

教科・科目名	数 学 MB(後期日程試験:令和7年度)
1	$(1) \frac{4}{5}$ $(2) \frac{1}{20}$ $(3) \frac{1}{2}$ $(4) \frac{147}{400}$
2	(1) $\tan \alpha + \tan \beta$ (2) 略 (3) $\ell \left\{ 1 + \frac{1}{x(\ell - x) - 1} \right\}$ (4) $\frac{\pi}{6}$
3	(1) 1 (2) $2\cos n\theta$ (3) 略 (4) $\frac{5+\sqrt{5}}{8}$
4	(1) 略 (2) $s = \frac{1}{2}$, $t = -\frac{1}{2}$ 点 Q の軌跡は,線分 OH の中点を中心とする半径 $\frac{R}{2}$ の円 (3) $\overrightarrow{OP} = \frac{R}{\ell}\overrightarrow{OH}$ のとき,最小値 $3R - \ell$
5	(1) 略 (2) 略 (3) 略 (4) $\frac{\pi}{4}$ (5) $\frac{\sqrt{\pi}}{2}$

採点·評価基準(具体的基準)

教科・科目名		数 学 MB(後期日程試験:令和 7 年度)
実施学部 学科(課程)等	理学部	(数学科)
出題のねらい	1	確率に関する性質を理解しているか。
	2	平面図形や三角関数に関する性質を理解しているか。
	3	複素数や三角関数に関する性質を理解しているか。
	4	ベクトルに関する性質を理解し、平面図形に関する問題を解く ことができるか。
	5	微分・積分の性質を理解し、極限に関する問題を解くことがで きるか。
採点基準	1	配点 20 %
	2	配点 20 %
	3	配点 20 %
	4	配点 20 %
	5	配点 20 %